The Relationship between Calgary Urban Form and Neighborhood-Based Walking

Gavin McCormack¹, Christine Friedenreich², Beverly Sandalack³, Billie Giles-Corti⁴, Patricia Doyle-Baker⁵, Alan Shiell⁶

¹Faculty of Medicine, University of Calgary, Canada; ²Department of Population Health Research, Alberta Health Services, Canada ³Faculty of Environmental Design, University of Calgary, Canada;

⁴McCaughey Centre, University of Melbourne, Melbourne, Australia; ⁵Faculty of Kinesiology, University of Calgary, Canada ⁶Centre of Excellence in Intervention and Prevention Sciences, Melbourne, Australia

BACKGROUND

- Regular physical activity can reduce the risk of cardiovascular disease, hypertension, type II diabetes, hyperlipidemia, osteoporosis, depression, some cancers, and overweight and obesity.¹
- Higher levels of neighborhood walkability is associated with higher levels of physical activity.²
- The combined effects of many, rather than individual environmental attributes, might better explain walking.^{3,4}

AIM

To examine the extent to which neighbourhood walkability was associated with *participation* and the *quantity* of neighbourhood-based walking for transportation and recreation among adults.

METHOD

SAMPLE DESIGN

- Target population: urban-dwelling adults residing in Calgary, Alberta, Canada.
- A random cross-sectional sample completed telephone-interviews between July-October, 2007 (n=2199; RR=33.6%) and January-April, 2008 (n=2223; RR=36.7%).
- Telephone-interviews captured physical activity, attitudes, and sociodemographic characteristics.

SURVEY VARIABLES

- Neighborhood-based walking: usual weekly minutes of walking undertaken for transportation (WT) and recreational (WR) purposes inside the neighborhood (everywhere within < 15-minute from home).5
- Covariates: sex, age, education, home ownership, number of children <18 years of age, time residing in neighborhood, reasons for moving to the neighborhood, and attitude towards walking.

OBJECTIVELY-DETERMINED WALKBILITY

 GIS-derived built environment attributes underwent a two-staged cluster analysis which identified three neighborhood types: high walkable (HW); medium walkable (MW); low walkable (LW)

STATISTICAL ANALYSIS

- Generalized Linear Models (binomial distribution and logit link) estimated the relationship between neighborhood type and *participation* in transportation and recreational walking ('any' versus 'no' walking).
- Generalized Linear Models (gamma distribution and identity link) estimated the relationship between neighborhood type and *minutes* of transportation and recreational walking.
- All models were adjusted for covariates.

TABLE 1. ENVIRONMENTAL ATTRIBUTES BY NEIGHBORHOOD TYPE

Environmental attribute	Low walkable N(neighborhoods)=2064		Moderate walkable N(neighborhoods)= 1330		High walkable N(neighborhoods)=263	
	Mean ± SD	cv	Mean ± SD	CV	Mean ± SD	CV
Environmental attribute based on a	area within 1.6 km of res	pondents h	ome			
Walkshed area (km²)	2.15 ± 0.69	0.32	3.36 ± 0.85	0.25	3.70 ± 1.07	0.29
# of businesses/km ²	11.95 ± 11.49	0.96	32.65 ± 22.16	0.68	142.87 ± 119.12	0.83
# of bus stops/km ²	11.06 ± 4.38	0.40	14.30 ± 4.10	0.29	29.87 ± 33.42	1.12
Mix of park types/ km ²	0.57 ± 0.56	0.99	0.29 ± 0.31	1.09	0.34 ± 0.46	1.33
Mix of recreational destinations/km2	0.24 ± 0.27	1.14	0.64 ± 0.41	0.64	0.48 ± 0.32	0.67
Sidewalk m/km ²	13958.02 ± 24440.46	0.17	19565.06 ± 2513.46	0.13	17255.24 ± 3601.15	0.21
Environmental attribute based on a	administrative boundary	in which re	spondents home was located			
Total population/km ²	2826.07 ± 920.33	0.33	2680.18 ± 925.01	0.35	7451.57 ± 2364.48	0.32
% of green space area	19.00 ± 9.00	0.46	17.00 ± 11.00	0.66	15.00 ± 14.00	0.90
Paths/cycleway m/km ²	2742.63 ± 1167.85	0.43	1845.47 ± 10005.27	0.54	3507.57 ± 3185.74	0.91

EXAMPLES OF LW AND HW NEIGHBORHOODS

PARTICIPANT CHARACTERISTICS BY NEIGHBORHOOD TYPE

	LW n=2322	MW n=1418	HW n=294
Age in years (mean±SD)	45.9 ± 15.1	49.6 ± 16.1	44.5 ± 14.8
Sex (women: %)	60.2	60.0	54.4
Highest education achieved (%)			
High school diploma or less	30.7	34.9	27.9
College or technical college	26.7	25.4	24.1
University degree	42.5	29.7	48.0
Number of children (none: %)	56.2	70.0	78.6
Season (%)			
Summer	12.0	15.2	13.3
Autumn	37.4	35.9	34.0
Winter	25.3	24.4	24.1
Spring	25.3	24.5	28.6
Home ownership (owners: %)	87.0	77.4	57.1
Neighborhood tenure (mean±SD)	9.4 ± 9.2	14.8 ± 13.6	7.9 ± 8.2
Any recreational walking (%)	76.1	73.6	72.1
Any transportation walking (%)	53.1	64.8	79.3

WEEKLY <u>PARTICIPATION</u> IN NEIGHBORHOOD-BASED WALKING BY NEIGHBORHOOD TYPE

* Significantly different (p<.05) from LW neighborhoods. Results adjusted for covariates.

WEEKLY MINUTES OF NEIGHBORHOOD-BASED WALKING BY NEIGHBORHOOD TYPE

* Significantly different (p<.05) from LW neighborhoods. Results adjusted for covariates.

CONCLUSIONS

- In support of previous research, our findings suggest that there appears to be three main types of neighbourhood in Calgary based on levels of walkability.⁶
- Within the Calgary context neighborhood walkability may be more important for encouraging and supporting transportation-related walking than for recreational walking.
- Creating neighborhoods with highly connected pedestrian networks, a large mix of businesses, high population densities, high access to sidewalks/pathways, and many bus stops within walking distance of home may support and encourage higher levels of physical activity.

REFERENCES

- 1. Warburton D., et al. (2006). *Health benefits of physical activity: the evidence*. Canadian Medical Association Journal; 174(6), 801-809.
- 2. McCormack G., et al. (2004). An update of recent evidence of the relationship between objective and self-report measures of the physical environment and physical activity behaviours. Journal of Science and Medicine in Sport; 7(Supplement 1), 81-92.
- 3. Frank LD, et al. (2007). Stepping towards causation: Do built environments or neighbourhood and travel preferences explain physical activity, driving and obesity. Social Science & Medicine, 65, 1898-1914.
- 4. Sallis, JF., et al. (2009). *Neighbourhood environments and physical activity among adults in 11 countries*. American Journal of Preventive Medicine, 36(6), 484-490
- 5. McCormack G., et al. (2009). *Testing the reliability of neighborhood-specific measures of physical activity among Canadian adults*. Journal of Physical Activity and Health: 6, 367-373.
- 6. Sandalack, B., and Nicolai, A.(2006). *The Calgary Project: Urban Form / Urban Life*. Calgary: University of Calgary Press

ACKNOWLEDGEMENT

The EcoEUFORIA project was funded by the Canadian Institutes for Health Research (CIHR; Principal Investigator: Dr. Alan Shiell). Mr. Francisco Alaniz Uribe is acknowledged for his contribution to the project. Gavin McCormack is supported by a CIHR New Investigator Salary Award.

Poster based on the following publication:

McCormack G, et al. (2012). The relationship between cluster-analysis derived walkability and local recreational and transportation walking among Canadian adults. Health and Place; 18, 1079-1087.

CONTACT INFORMATION

Gavin McCormack, PhD, MSc Assistant Professor Department of Community Health Sciences, Faculty of Medicine

University of Calgary, Alberta, Canada

Telephone: 1-403-220-8193; Email: gmccorma@ucalgary.ca